Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436125

RESUMO

Paddy fields serve as significant reservoirs of soil organic carbon (SOC) and their potential for terrestrial carbon (C) sequestration is closely associated with changes in SOC pools. However, there has been a dearth of comprehensive studies quantifying changes in SOC pools following extended periods of rice cultivation across a broad geographical scale. Using 104 rice paddy sampling sites that have been in continuous cultivation since the 1980s across China, we studied the changes in topsoil (0-20 cm) labile organic C (LOC I), semi-labile organic C (LOC II), recalcitrant organic C (ROC), and total SOC. We found a substantial increase in both the content (48%) and density (39%) of total SOC within China's paddy fields between the 1980s to the 2010s. Intriguingly, the rate of increase in content and density of ROC exceeded that of LOC (I and II). Using a structural equation model, we revealed that changes in the content and density of total SOC were mainly driven by corresponding shifts in ROC, which are influenced both directly and indirectly by climatic and soil physicochemical factors; in particular temperature, precipitation, phosphorous (P) and clay content. We also showed that the δ13 CLOC were greater than δ13 CROC , independent of the rice cropping region, and that there was a significant positive correlation between δ13 CSOC and δ13 Cstraw . The δ13 CLOC and δ13 CSOC showed significantly negative correlation with soil total Si, suggesting that soil Si plays a part in the allocation of C into different SOC pools, and its turnover or stabilization. Our study underscores that the global C sequestration of the paddy fields mainly stems from the substantial increase in ROC pool.


Assuntos
Oryza , Solo , Carbono , China , Geografia
2.
Sci Total Environ ; 922: 170926, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38354811

RESUMO

Carbon capture and storage (CCS) of CO2 is a key technology for substantially mitigating global greenhouse gas emissions. Determining the biogeochemical processes in host rocks after CO2 injection informs the viability of carbon storage as a long-term sink for CO2, the complexity of reservoir CH4 cycling, as well as the direct and indirect environmental impacts of this strategy. The doubly substituted ('clumped') isotopologues of methane (13CH3D and 12CH2D2) provide novel insights into methane origins and post-generation processing. Here, we report the chemical compositions of hydrocarbons (C1/C2+ molecular ratios), and methane bulk and clumped isotopes (δ13C, δD, Δ13CH3D and Δ12CH2D2) of a CO2 enhanced coal bed methane recovery (CO2-ECBM) area in Qinshui basin, China and is an analogue for carbon capture and storage. The clumped isotopologue compositions observed in the study area are generally consistent with a range of temperatures spanning 73 to 193 °C. The range in apparent temperature and correlations among clumped and bulk isotopic indices are best explained by mixing between a high maturity thermogenic methane (high in δ13C and δD, with a clumped isotope composition equilibrated near ∼249 °C) and biogenic methane formed or processed in the reservoir (low in δ13C and δD, with a clumped isotope composition equilibrated near 16-27 °C). We hypothesize that the biogenic endmember may result from slow methanogenesis and/or anaerobic oxidation of methane (AOM). This study demonstrates that the potential of methane clumped isotope approach to identify in situ microbial metabolic processes and their association with carbon cycling in CO2-ECBM area, improving our understanding of biogeochemical mechanisms in analogous geological reservoirs.

3.
Sci Bull (Beijing) ; 69(7): 978-987, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242834

RESUMO

Aerosol ammonium (NH4+), mainly produced from the reactions of ammonia (NH3) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH4+ can provide scientific insights into air quality improvements. However, the sources of NH3 in urban areas are not well understood, and few studies focus on NH3/NH4+ at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH4+. In this study, we perform both field observation and modeling studies (the Community Multiscale Air Quality, CMAQ) to investigate regional NH3 emission sources and vertically resolved NH4+ formation mechanisms during the winter in Beijing. Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH3 emissions, including fossil fuel sources, NH3 slip, and biomass burning, are important sources of aerosol NH4+ with more than 60% contribution occurring on heavily polluted days. In contrast, volatilization-related NH3 sources (livestock breeding, N-fertilizer application, and human waste) are dominant on clean days. Combustion-related NH3 is mostly local from Beijing, and biomass burning is likely an important NH3 source (∼15%-20%) that was previously overlooked. More effective control strategies such as the two-product (e.g., reducing both SO2 and NH3) control policy should be considered to improve air quality.

4.
Environ Pollut ; 344: 123353, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219894

RESUMO

In contaminated soil sites, the coexistence of inorganic and organic contaminants poses a significant threat to both the surrounding ecosystem and public health. However, the migration characteristics of these co-contaminants within the soil and their interactions with key components, including Fe-bearing minerals, organic matter, and microorganisms, remain unclear. This study involved the collection of a 4.3-m-depth co-contaminated soil profile to investigate the vertical distribution patterns of co-contaminants (namely, arsenic, cadmium, and polychlorinated biphenyls (PCBs)) and their binding mechanisms with environmental factors. The results indicated a notable downward accumulation of inorganic contaminants with increasing soil depth, whereas PCBs were predominantly concentrated in the uppermost layer. Chemical extraction and synchrotron radiation analysis highlighted a positive correlation between the abundance of reactive iron (FeCBD) and both co-contaminants and microbial communities in the contaminated site. Furthermore, Mantel tests and structural equation modeling (SEM) demonstrated the direct impacts of FeCBD and microbial communities on co-contaminants within the soil profile. Overall, these results provided valuable insights into the migration and transformation characteristics of co-contaminants and their binding mechanisms mediated by minerals, organic matter, and microorganisms.


Assuntos
Microbiota , Bifenilos Policlorados , Poluentes do Solo , Ferro/química , Solo/química , Bifenilos Policlorados/análise , Poluentes do Solo/análise , Minerais/química
5.
Sci Total Environ ; 912: 169206, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092199

RESUMO

Coastal wetland sediment is important reservoir for silicon (Si), and plays an essential role in controlling its biogeochemical cycling. However, little is known about Si fractionations and the associated factors driving their transformations in coastal wetland sediments. In this study, we applied an optimized sequential Si extraction method to separate six sub-fractions of non-crystalline Si (Sinoncry) in sediments from two coastal wetlands, including Si in dissolved silicate (Sidis), Si in the adsorbed silicate (Siad), Si bound to organic matter (Siorg), Si occluded in pedogenic oxides and hydroxides (Siocc), Si in biogenic amorphous silica (Siba), and Si in pedogenic amorphous silica (Sipa). The results showed that the highest proportion of Si in the Sinoncry fraction was Siba (up to 6.6 % of total Si (Sitot)), followed by the Sipa (up to 1.8 % of Sitot). The smallest proportion of Si was found in the Sidis and Siad fractions with the sum of both being <0.1 % of the Sitot. We found a lower Siocc content (188 ± 96.1 mg kg-1) when compared to terrestrial soils. The Sidis was at the center of the inter-transformation among Si fractions, regulating the biogeochemical Si cycling of coastal wetland sediments. Redundancy analysis (RDA) combined with Pearson's correlations further showed that the basic biogenic elements (total organic carbon and total nitrogen), pH, and sediment salinity collectively controlled the Si fractionations in coastal wetland sediments. Our research optimizes sediment Si fractionation procedure and provides insights into the role of sedimentary Si fractions in controlling Si dynamics and knowledge for unraveling the biogeochemical Si cycling in coastal ecosystems.

6.
Water Res ; 250: 121062, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157604

RESUMO

The microbial "unseen majority" as drivers of carbon cycle represent a significant source of uncertain climate change. To comprehend the resilience of life forms on Earth to climate change, it is crucial to incorporate knowledge of intricate microbial interactions and their impact to carbon transformation. Combined with carbon stable isotope analysis and high-throughput sequencing technology, the underlying mechanism of microbial interactions for organic carbon degradation has been elucidated. Niche differentiation enabled archaea to coexist with bacteria mainly in a cooperative manner. Bacteria composed of specialists preferred to degrade lighter carbon, while archaea were capable of utilizing heavier carbon. Microbial resource-dependent interactions drove stepwise degradation of organic matter. Bacterial cooperation directly facilitated the degradation of algae-dominated particulate organic carbon, while competitive feeding of archaea caused by resource scarcity significantly promoted the mineralization of heavier particulate organic carbon and then the release of dissolved inorganic carbon. Meanwhile, archaea functioned as a primary decomposer and collaborated with bacteria in the gradual degradation of dissolved organic carbon. This study emphasized microbial interactions driving carbon cycle and provided new perspectives for incorporating microorganisms into carbon biogeochemical models.


Assuntos
Bactérias , Áreas Alagadas , Isótopos de Carbono , Bactérias/metabolismo , Archaea/metabolismo , Carbono/metabolismo , Interações Microbianas
7.
Environ Sci Technol ; 58(1): 468-479, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38141044

RESUMO

Coastal wetlands contribute to the mitigation of climate change through the sequestration of "blue carbon". Microbial necromass, lignin, and glycoproteins (i.e., glomalin-related soil proteins (GRSP)), as important components of soil organic carbon (SOC), are sensitive to environmental change. However, their contributions to blue carbon formation and the underlying factors remain largely unresolved. To address this paucity of knowledge, we investigated their contributions to blue carbon formation along a salinity gradient in coastal marshes. Our results revealed decreasing contributions of microbial necromass and lignin to blue carbon as the salinity increased, while GRSP showed an opposite trend. Using random forest models, we showed that their contributions to SOC were dependent on microbial biomass and resource stoichiometry. In N-limited saline soils, contributions of microbial necromass to SOC decreased due to increased N-acquisition enzyme activity. Decreases in lignin contributions were linked to reduced mineral protection offered by short-range-ordered Fe (FeSRO). Partial least-squares path modeling (PLS-PM) further indicated that GRSP could increase microbial necromass and lignin formation by enhancing mineral protection. Our findings have implications for improving the accumulation of refractory and mineral-bound organic matter in coastal wetlands, considering the current scenario of heightened nutrient discharge and sea-level rise.


Assuntos
Carbono , Solo , Lignina , Glicoproteínas , Proteínas Fúngicas , Minerais
8.
Environ Sci Technol ; 57(49): 20647-20656, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033251

RESUMO

The mechanism of sulfate formation during winter haze events in North China remains largely elusive. In this study, the multiple sulfur isotopic composition of sulfate in different grain-size aerosol fractions collected seasonally from sampling sites in rural, suburban, urban, industrial, and coastal areas of North China are used to constrain the mechanism of SO2 oxidation at different levels of air pollution. The Δ33S values of sulfate in aerosols show an obvious seasonal variation, except for those samples collected in the rural area. The positive Δ33S signatures (0‰ < Δ33S < 0.439‰) observed on clean days are mainly influenced by tropospheric SO2 oxidation and stratospheric SO2 photolysis. The negative Δ33S signatures (-0.236‰ < Δ33S < ∼0‰) observed during winter haze events (PM2.5 > 200 µg/m3) are mainly attributed to SO2 oxidation by H2O2 and transition metal ion catalysis (TMI) in the troposphere. These results reveal that both the H2O2 and TMI pathways play critical roles in sulfate formation during haze events in North China. Additionally, these new data provide evidence that the tropospheric oxidation of SO2 can produce significant negative Δ33S values in sulfate aerosols.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Sulfatos , Peróxido de Hidrogênio , Isótopos de Enxofre/análise , China , Óxidos de Enxofre , Estações do Ano , Aerossóis/análise , Monitoramento Ambiental , Material Particulado/análise
9.
Water Res ; 242: 120271, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399689

RESUMO

Agricultural ditches are pervasive in agricultural areas and are potential greenhouse gas (GHG) hotspots, since they directly receive abundant nutrients from neighboring farmlands. However, few studies measure GHG concentrations or fluxes in this particular water course, likely resulting in underestimations of GHG emissions from agricultural regions. Here we conducted a one-year field study to investigate the GHG concentrations and fluxes from typical agricultural ditch systems, which included four different types of ditches in an irrigation district located in the North China Plain. The results showed that almost all the ditches were large GHG sources. The mean fluxes were 333 µmol m-2 h-1 for CH4, 7.1 mmol m-2 h-1 for CO2, and 2.4 µmol m-2 h-1 for N2O, which were approximately 12, 5, and 2 times higher, respectively, than that in the river connecting to the ditch systems. Nutrient input was the primary driver stimulating GHG production and emissions, resulting in GHG concentrations and fluxes increasing from the river to ditches adjacent to farmlands, which potentially received more nutrients. Nevertheless, the ditches directly connected to farmlands showed lower GHG concentrations and fluxes compared to the ditches adjacent to farmlands, possibly due to seasonal dryness and occasional drainage. All the ditches covered approximately 3.3% of the 312 km2 farmland area in the study district, and the total GHG emission from the ditches in this area was estimated to be 26.6 Gg CO2-eq yr-1, with 17.5 Gg CO2, 0.27 Gg CH4, and 0.006 Gg N2O emitted annually. Overall, this study demonstrated that agricultural ditches were hotspots of GHG emissions, and future GHG estimations should incorporate this ubiquitous but underrepresented water course.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono , Metano/análise , Óxido Nitroso/análise , Água , Efeito Estufa
10.
Environ Sci Technol ; 57(46): 17876-17888, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37414443

RESUMO

Methane (CH4) is a matter of environmental concern; however, global methane isotopologue data remain inadequate. This is due to the challenges posed by high-resolution testing technology and the need for larger sample volumes. Here, worldwide methane clumped isotope databases (n = 465) were compiled. We compared machine-learning (ML) models and used random forest (RF) to predict new Δ12CH2D2 distributions, which cover valuable and hard-to-replicate methane clumped isotope experimental data. Our RF model yields a reliable and continuous database including ruminants, acetoclastic methane, multiple pyrolysis, and controlled experiments. We showed the effectiveness of utilizing a new data set to quantify isotopologue fractionations in biogeochemical methane processes, as well as predicting the steady-state atmospheric methane clumped isotope composition (Δ13CH3D of +2.26 ± 0.71‰ and Δ12CH2D2 of +62.06 ± 4.42‰) with notable biological contributions. Our measured summer and winter water emitted gases (n = 6) demonstrated temperature-driven seasonal microbial community evolution determined by atmospheric clumped isotope temporal variations (Δ 13CH3D ∼ -0.91 ± 0.25 ‰ and Δ12CH2D2 ∼ +3.86 ± 0.84 ‰), which in turn is relevant for future models quantifying the contribution of methane sources and sinks. Predicting clumped isotopologues translates our methane geochemical understanding into quantifiable variables for modeling that can continue to improve predictions and potentially inform global greenhouse gas emissions and mitigation policy.


Assuntos
Gases , Metano , Isótopos de Carbono/análise , Temperatura , Bases de Dados Factuais
11.
Water Res ; 241: 120133, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262945

RESUMO

The sequestration of organic carbon (OC) in wetland sediments is influenced by the presence of oxygen or lack thereof. The mechanisms of OC sequestration under redox fluctuations, particularly by the co-mediation of reactive iron (Fe) protection and thermodynamic limitation by the energetics of the OC itself, remain unclear. Over the past 26 years, a combination of field surveys and remote sensing images had revealed a strong decline in both natural and constructed wetland areas in Tianjin. This decline could be attributed to anthropogenic landfill practices and agricultural reclamation efforts, which may have significant impacts on the oxidation-reduction conditions for sedimentary OC. The Fe-bound OC (CBD extraction) decreased by 2 to 10-fold (from 8.3 to 10% to 0.7-4.5%) with increasing sediment depth at three sites with varying water depths (WD). The high-resolution spectro-microscopy analysis demonstrated that Fe (oxyhydr)oxides were colocalized with sedimentary OC. Corresponding to lower redox potential, the nominal oxidation state of C (NOSC), which corresponds to the energy content in OC, became more negative (energy content increased) with increasing sediment depth. Taken together, the preservation of sedimentary OC is contingent on the prevailing redox conditions: In environments where oxygen availability is high, reactive Fe provides protection for OC, while in anoxic environments, thermodynamic constraints (i.e., energetic constraints) limit the oxidation of OC.


Assuntos
Carbono , Áreas Alagadas , Carbono/análise , Compostos Férricos , Oxirredução , Oxigênio , Sedimentos Geológicos
12.
Environ Sci Technol ; 57(25): 9214-9223, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37303158

RESUMO

The impacts of human activities on the riverine carbon (C) cycle have only recently been recognized, and even fewer studies have been reported on anthropogenic impacts on C cycling in rivers draining the vulnerable alpine areas. Here, we examined carbon isotopes (δ13CDOC and Δ14CDOC), fluorescence, and molecular compositions of riverine dissolved organic matters (DOM) in the Bailong River catchment, the eastern edge of the Tibetan Plateau to identify anthropogenic impacts on the C cycle. Human activities show limited impact on dissolved organic carbon (DOC) concentration, but significantly increased the age of DOC (from modern to ∼1600 yr B.P.) and changed the molecular compositions through agriculture and urbanization despite in the catchment with low population density. Agricultural activities indirectly increased the leaching of N-containing aged organic matter from deep soil to rivers. Urbanization released S-containing aged C from fossil products into rivers directly through wastewater. The aged DOC from agricultural activity and wastewater discharge was partly biolabile and/or photolabile. This study highlights that riverine C is sensitive to anthropogenic disturbance. Additionally, the study also emphasizes that human activities reintroduce aged DOC into the modern C cycle, which would accelerate the geological C cycle.


Assuntos
Efeitos Antropogênicos , Rios , Humanos , Idoso , Tibet , Matéria Orgânica Dissolvida , Águas Residuárias , Carbono
13.
Sci Total Environ ; 895: 165099, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379928

RESUMO

Forest soils cover about 30 % of the Earth's land surface and play a fundamental role in the global cycle of organic matter. Dissolved organic matter (DOM), the largest active pool of terrestrial carbon, is essential for soil development, microbial metabolism and nutrient cycling. However, forest soil DOM is a highly complex mixture of tens of thousands of individual compounds, which is largely composed of organic matter from primary producers, residues from microbial process and the corresponding chemical reactions. Therefore, we need a detailed picture of molecular composition in forest soil, especially the pattern of large-scale spatial distribution, which can help us understand the role of DOM in the carbon cycle. To explore the spatial and molecular variations of DOM in forest soil, we choose six major forest reserves located in different latitudes ranging in China, which were investigated by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). Results show that aromatic-like molecules are preferentially enriched in DOM at high latitude forest soils, while aliphatic/peptide-like, carbohydrate-like, and unsaturated hydrocarbon molecules are preferentially enriched in DOM at low latitude forest soils, besides, lignin-like compounds account for the highest proportion in all forest soil DOM. High latitude forest soils have higher aromatic equivalents and aromatic indices than low latitude forest soils, which suggest that organic matter at higher latitude forest soils preferentially contain plant-derived ingredients and are refractory to degradation while microbially derived carbon is dominant in organic matter at low latitudes. Besides, we found that CHO and CHON compounds make up the majority in all forest soil samples. Finally, we visualized the complexity and diversity of soil organic matter molecules through network analysis. Our study provides a molecular-level understanding of forest soil organic matter at large scales, which may contribute to the conservation and utilization of forest resources.

14.
Environ Sci Technol ; 57(20): 7753-7763, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37163365

RESUMO

Dissolved organic matter (DOM) is crucial for the carbon biogeochemical cycle and has a close link with microbiome in aquatic ecosystems; however, the causal relationship between DOM and microbial diversity in inland waters is not very clear so far. Therefore, a national survey of China's inland waters was conducted, and the DOM chemical composition and microbial community composition were determined by Fourier transform ion cyclotron resonance mass spectrometry and high-throughput sequencing to clarify the abovementioned question. Here, we found that DOM chemodiversity was governed by microbial community assembly in inland waters, not vice versa. Under the control of microbial biogeography, DOM chemodiversity showed a clear geographical distribution difference. Water DOM chemodiversity was mainly constrained by bacterial and archaeal community composition, whereas sediment DOM chemodiversity was mainly controlled by eukaryotic and fungal community composition. In addition, the sediment DOM chemical composition was also affected by the interaction of different microbial groups between waters and sediments. The study is the first to clarify the causal relationship and proposes a microbial regulatory mechanism on the geographical distribution pattern of DOM chemodiversity, thus further deepening the understanding of the DOM biogeochemical cycle.


Assuntos
Matéria Orgânica Dissolvida , Microbiota , Bactérias , Ciclo do Carbono , Archaea/genética
15.
Sci Total Environ ; 879: 163214, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37011688

RESUMO

How climate change regulates silicate weathering in tectonically active areas remains clear. To evaluate the roles of temperature and hydrology in continental-scale silicate weathering in high-relief catchments, we applied a high temporal resolution of lithium isotopes in the Yalong River, which drains the high-relief borders of the eastern Tibetan Plateau. The dissolved δ7Li values range from +12.2‰ to +13.7‰ in the non-monsoon season and are higher and significantly vary from +13.5‰ to +19.4‰ in the monsoon season. The negative correlation between dissolved δ7Li and the Li/Na ratio is attributed to the formation of various proportions of δ7Li-low secondary minerals during weathering. From non-monsoon to monsoon season, the weathering intensity decreases with increasing secondary minerals formation and the weathering transforms from a supply limited to a kinetically limited weathering regime, indicated by a negative correlation between dissolved δ7Li value and SWR/D ratio (SWR = silicate weathering rate and D = total denudation rate). No correlations between temperature and dissolved δ7Li values were observed, and SWR suggested that temperature is not the direct control factor of silicate weathering in high-relief areas. The dissolved δ7Li values display positive correlations with discharge, physical erosion rates (PERs), and SWR. This positive correlations was attributed to an increase in the PER which caused the formation of more secondary minerals with increasing discharge. These results indicate the rapid temporal variability of riverine Li isotopes and chemical weathering process in response to changes in hydrology rather than temperature. Combined with the compiled PER, SWR, and Li isotopes at various altitudes, we further suggest that weathering in high-altitude catchments is more sensitive to hydrological changes than weathering in low-altitude catchments. These results highlight the key role of the hydrologic cycle (runoff and discharge) and the geomorphic regime in controlling global silicate weathering.

16.
Sci Total Environ ; 874: 162509, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870263

RESUMO

The environmental behavior of heavy metals in soil is significantly regulated by their binding with dissolved organic matter (DOM), which is affected by soil moisture contents. However, the mechanism of this interaction in soils with varying moisture is still not well understood. Using a combination of ultrafiltration, Cu(II) titration, and multispectral (ultraviolet-visible absorption, 3D fluorescence, Fourier transform infrared) analysis techniques, we studied the differences in the spectral characteristics and Cu(II) binding properties of soil dissolved organic matter (DOM) and its different molecular weight (MW) fractions with moisture gradients. We found that the abundance and spectral characters of soil DOM changed with increasing soil moisture, i.e., the increase in abundance while the decrease in aromaticity and humification index. The components of DOM, shown by Fluorescence region-integration (FRI) analysis, also changed, with an increase in the proportion of protein-like substances and a decrease of humic-like and fulvic-like substances. The overall Cu(II) binding potential of soil DOM diminished with increasing soil moisture, as indicated by the fluorescence parallel factor (PARAFAC) analysis. This is aligns with the changes in DOM composition, as the humic-like and fulvic-like fractions exhibited higher Cu(II) binding potential compared to the protein-like fractions. The low MW fraction of the MW-fractionated samples showed a stronger binding potential for Cu(II) compared to the high MW fraction. Finally, the active binding site of Cu(II) in DOM, as revealed by UV-difference spectroscopy and 2D-FTIR-COS analysis, decreased with increasing soil moisture, with the order of preferentially functional groups shifting from OH, NH, and CO to CN and CO. This study emphasizes the impact of moisture variations on the characteristics of DOM and its interaction with Cu(II), providing insight into the environmental fate of heavy metal contaminants in soil in areas with alternating land and water conditions.

18.
Sci Rep ; 13(1): 4531, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941375

RESUMO

Ferric ions can bind strongly with dissolved organic matter (DOM), including humic acids (HA), fulvic acids (FA), and protein-like substances, whereas isolation of Fe-DOM precipitates (Fe-DOMP) and their biochemical characteristics remain unclear. In this work FeCl3 was used to isolate DOM components from various sources, including river, lake, soil, cow dung, and standard tryptophan and tyrosine, through precipitation at pH 7.5-8.5. The Fe-DOMP contribute to total DOM by approximately 38.6-93.8% of FA, 76.2% of HA and 25.0-30.4% of tryptophan and tyrosine, whilst fluorescence spectra allowed to monitor/discriminate the various DOM fractions in the samples. The relative intensity of the main infrared peaks such as 3406‒3383 cm-1 (aromatic OH), 1689‒1635 cm-1 (‒COOH), 1523-1504 cm-1 (amide) and 1176-1033 cm-1 (‒S=O) show either to decline or disappear in Fe‒DOMP. These results suggest the occurrence of Fe bonds with various functional groups of DOM, indicating the formation of π-d electron bonding systems of different strengths in Fe‒DOMP. The novel method used for isolation of Fe-DOMP shows promising in opening a new frontier both at laboratory and industrial purposes. Furthermore, results obtained may provide a better understanding of metal-organic complexes involved in the regulation of the long-term stabilization/sequestration of DOM in soils and waters.

19.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770938

RESUMO

Sauce-flavor Baijiu is one of the most complex and typical types of traditional Chinese liquor, whose trace components have an important impact on its taste and quality. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is one of the most favorable analytical tools to reveal trace molecular components in complex samples. This study analyzed the chemical diversity of several representative sauce-flavor Baijiu using the combination of electrospray ionization (ESI) and FT-ICR MS. The results showed that ESI+ and ESI- exhibited different chemical features characteristic of trace components. Overall, sauce-flavor Baijiu was dominated by CHO class compounds, and the main specific compound types were aliphatic, highly unsaturated with low oxygen, and peptide-like compounds. The mass spectral parameters resolved by FT-ICR MS of several well-known brands were relatively similar, whereas the greatest variability was observed from an internally supplied brand. This study provides a new perspective on the mass spectrometry characteristics of trace components of sauce-flavor Baijiu and offers a theoretical foundation for further optimization of the gradients in Baijiu.

20.
Environ Int ; 172: 107796, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36773562

RESUMO

Organic nitrogen (ON) is an important participant in the Earth's N cycle. Previous studies have shown that penguin feces add an abundance of nutrients including N to the soil, significantly changing the eco-environment in ice-free areas in Antarctica. To explore the molecular transformation of ON in penguin guano-affected soil, we collected guano-free weathered soil, modern guano-affected soil from penguin colonies, ancient guano-affected soil from abandoned penguin colonies, and penguin feces from the Ross Sea region, Antarctica, and Fourier transform ion cyclotron mass spectrometry (FT-ICR MS) was used to investigate the chemical composition of water-extractable ON. By comparing the molecular compositions of ON among different samples, we found that the number of ON compounds (>4,000) in weathered soil is minimal, while carboxylic-rich alicyclic-like molecules (CRAM-like) are dominant. Penguin feces adds ON into the soil with > 10,000 CHON, CHONS and CHN compounds, including CRAM-like, lipid-like, aliphatic/ peptide-like molecules and amines in the guano-affected soil. After the input of penguin feces, macromolecules continue to degrade, and other ON compounds tend to be oxidized into relatively stable CRAM-like molecules, this is an important transformation process of ON in guano-affected soils. We conclude the roles of various forms of ON in the N cycle are complex and diverse. Combined with previous studies, ON eventually turns into inorganic N and is lost from the soil. The lost N ultimately returns to the ocean and the food web, thus completing the N cycle. Our study preliminarily reveals the molecular transformation of ON in penguin guano-affected soil and is important for understanding the N cycle in Antarctica.


Assuntos
Spheniscidae , Humanos , Animais , Nitrogênio , Regiões Antárticas , Solo/química , Aminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA